Modeling simple-cell direction selectivity with normalized, half-squared, linear operators.

نویسنده

  • D J Heeger
چکیده

1. A longstanding view of simple cells is that they sum their inputs linearly. However, the linear model falls short of a complete account of simple-cell direction selectivity. We have developed a nonlinear model of simple-cell responses (hereafter referred to as the normalization model) to explain a larger body of physiological data. 2. The normalization model consists of an underlying linear stage along with two additional nonlinear stages. The first is a half-squaring nonlinearity; half-squaring is half-wave rectification followed by squaring. The second is a divisive normalization non-linearity in which each model cell is suppressed by the pooled activity of a large number of cells. 3. By comparing responses with counterphase (flickering) gratings and drifting gratings, researchers have demonstrated that there is a nonlinear contribution to simple-cell responses. Specifically they found 1) that the linear prediction from counterphase grating responses underestimates a direction index computed from drifting grating responses, 2) that the linear prediction correctly estimates responses to gratings drifting in the preferred direction, and 3) that the linear prediction overestimates responses to gratings drifting in the nonpreferred direction. 4. We have simulated model cell responses and derived mathematical expressions to demonstrate that the normalization model accounts for this empirical data. Specifically the model behaves as follows. 1) The linear prediction from counterphase data underestimates the direction index computed from drifting grating responses. 2) The linear prediction from counterphase data overestimates the response to gratings drifting in the nonpreferred direction. The discrepancy between the linear prediction and the actual response is greater when using higher contrast stimuli. 3) For an appropriate choice of contrast, the linear prediction from counterphase data correctly estimates the response to gratings drifting in the preferred direction. For higher contrasts the linear prediction overestimates the actual response, and for lower contrasts the linear prediction underestimates the actual response. 5. In addition, the normalization model is qualitatively consistent with data on the dynamics of simple-cell responses. Tolhurst et al. found that simple cells respond with an initial transient burst of activity when a stimulus first appears. The normalization model behaves similarly; it takes some time after a stimulus first appears before the model cells are fully normalized. We derived the dynamics of the model and found that the transient burst of activity in model cells depends in a particular way on stimulus contrast. The burst is short for high-contrast stimuli and longer for low-contrast stimuli.(ABSTRACT TRUNCATED AT 400 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normalized and Diierential Convolution Methods for Interpolation and Filtering of Incomplete and Uncertain Data

In this paper it is shown how false operator responses due to missing or uncertain data can be sig-niicantly reduced or eliminated. Perhaps the most well-known of such eeects are the variousèdge eeects' which invariably occur at the edges of the input data set. Further, it is shown how operators having a higher degree of selectivity and higher tolerance against noise can be constructed using si...

متن کامل

Normalized and Differential Convolution Methods for Interpolation and Filtering of Incomplete and Uncertain Data

In this paper it is shown how false operator responses due to missing or uncertain data can be significantly reduced or eliminated. Perhaps the most well-known of such effects are the various ‘edge effects’ which invariably occur at the edges of the input data set. Further, it is shown how operators having a higher degree of selectivity and higher tolerance against noise can be constructed usin...

متن کامل

Direction selectivity of synaptic potentials in simple cells of the cat visual cortex.

Direction selectivity of synaptic potentials in simple cells of the cat visual cortex. J. Neurophysiol. 78: 2772-2789, 1997. The direction selectivity of simple cells in the visual cortex is generated at least in part by nonlinear mechanisms. If a neuron were spatially linear, its responses to moving stimuli could be predicted accurately from linear combinations of its responses to stationary s...

متن کامل

Directional selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex.

1. Simple cells in cat striate cortex were studied with a number of stimulation paradigms to explore the extent to which linear mechanisms determine direction selectivity. For each paradigm, our aim was to predict the selectivity for the direction of moving stimuli given only the responses to stationary stimuli. We have found that the prediction robustly determines the direction and magnitude o...

متن کامل

An Architectural Mechanism for Direction-tuned Cortical Simple Cells: The Role of Mutual Inhibition

A linear architectural model of cortical simple cells is presented. The model evidences how mutual inhibition, occurring through synaptic coupling functions asymmetrically distributed in space, can be a possible basis for a wide variety of spatio-temporal simple cell response properties, including direction selectivity and velocity tuning. While spatial asymmetries are included explicitly in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 70 5  شماره 

صفحات  -

تاریخ انتشار 1993